HTTP API Documentation

Integrate attention prediction directly into your applications with our RESTful API

✓ RESTful Design ✓ JSON Responses ✓ Real-time Processing

API Overview

Access the RealEye Attention Predictor programmatically via HTTP API for seamless integration into web applications, automated workflows, and custom tools.

Endpoint

https://api.realeye.io/v1/predict_attention

Example endpoint - actual URL provided with API access

Authentication

Authorization: Bearer YOUR_API_KEY

Secure API key authentication required for all requests

Request Format

Send image data via HTTP POST request. Supported formats include JPEG, PNG, and WebP.

JSON Input Example

{
  "image_base64": "..."
}

cURL Example

curl -X POST \
  https://api.realeye.io/v1/predict_attention \
  -H "Authorization: Bearer YOUR_API_KEY" \
  -H "Content-Type: image/jpeg" \
  --data-binary "@path/to/your_image.jpg"

Response Format

The API returns comprehensive attention prediction data in JSON format, including matrices for VAI, Hold, Speed, and Reach components across different time ranges.

JSON Response Structure

{
  "image_id": "user_provided_or_generated_id",
  "dimensions": {
    "width": 224,    // Matrix width (number of columns)
    "height": 224    // Matrix height (number of rows)
  },
  "attention_matrices": {
    "hold_500ms": [
      [0.001, 0.002, 0.003, ...],  // Row 0 (224 values)
      [0.004, 0.005, 0.006, ...],  // Row 1 (224 values)
      ...                          // 224 total rows
    ],
    "speed_500ms": [
      [0.15, 0.22, 0.18, ...],     // Higher values typical for Speed
      [0.31, 0.28, 0.25, ...],
      ...
    ],
    "reach_500ms": [
      [0.12, 0.19, 0.16, ...],     // Similar range to Speed
      [0.24, 0.31, 0.28, ...],
      ...
    ],
    "vai_500ms": [
      [0.09, 0.15, 0.12, ...],     // Composite of above three
      [0.20, 0.21, 0.20, ...],
      ...
    ],
    "hold_1000ms": [[...], [...], ...],
    "speed_1000ms": [[...], [...], ...],
    "reach_1000ms": [[...], [...], ...],
    "vai_1000ms": [[...], [...], ...],
    // Additional time ranges: 3000ms, 5000ms, 10000ms
  }
}

Matrix Data

2D arrays representing Cell Attention Scores, normalized between 0.0 and 1.0 for easy visualization and analysis.

Multiple Metrics

Hold, Speed, and Reach predictions across different time intervals (500ms, 1000ms, 3000ms, etc.), with VAI calculated as a composite.

Flexible Output

Generate heatmaps, calculate AOI statistics, or integrate with analytics tools using the numerical data.

Attention Matrix Dimensions

Understanding the structure and dimensions of the attention matrices is crucial for proper integration and data processing.

Matrix Structure

Each attention matrix is a 2D array where each cell represents a spatial location on the input image. The matrix dimensions correspond to the processed image resolution.

Standard Dimensions

Matrices are 224×224 cells, providing high-resolution spatial attention mapping. The exact dimensions are always provided in the dimensions field of the API response.

Coordinate System

Matrix coordinates follow standard image conventions: [row][column] indexing, where [0][0] represents the top-left corner of the image.

Matrix Access Example

// Access attention score at specific coordinates
const matrix = response.attention_matrices.vai_500ms;
const topLeftScore = matrix[0][0];           // Top-left corner
const centerScore = matrix[112][112];        // Center (for 224x224 matrix)
const bottomRightScore = matrix[223][223];   // Bottom-right corner

// Matrix dimensions
const height = matrix.length;          // Number of rows (224)
const width = matrix[0].length;        // Number of columns (224)

// Alternative: Use dimensions from response
const { width, height } = response.dimensions;

Cell Values

Range: 0.0 to 1.0 (float32)
Meaning: Higher values indicate stronger predicted attention
Terminology: Individual values are called "Cell Attention Scores"

Spatial Resolution

Each matrix cell represents a small spatial region of the input image. For a 224×224 matrix, each cell covers approximately 1/224th of the image width and height.

Processing Guidelines

Matrices are ready for direct use in heatmap generation, statistical analysis, or AOI calculations. No additional normalization is required.

Value Characteristics

Hold matrices: Typically show "hills" with peaks around 0.03
Speed/Reach matrices: Show broader patterns with higher peak values
VAI matrices: Composite averaging of the three components

AOI Statistics API (Proposed)

Calculate Area of Interest (AOI) attention statistics for custom reporting and analysis. This proposed endpoint would enable developers to create comprehensive AOI reports similar to our internal reporting system.

Endpoint

POST /v1/calculate_aoi_statistics

Calculate attention statistics for defined Areas of Interest

Use Cases

  • Custom reporting dashboards
  • A/B testing analysis
  • Design performance metrics
  • Scan path optimization

Request Format

{
  "image_id": "your_prediction_image_id",
  "aois": [
    {
      "id": "header-logo",
      "name": "Header Logo",
      "coordinates": {
        "x": 20,
        "y": 10,
        "width": 150,
        "height": 60
      }
    },
    {
      "id": "cta-button",
      "name": "Call to Action Button",
      "coordinates": {
        "x": 300,
        "y": 400,
        "width": 200,
        "height": 50
      }
    }
  ],
  "metrics": ["vai", "speed", "reach", "hold"],
  "time_ranges": ["500ms", "1000ms", "3000ms", "5000ms", "10000ms"]
}

Response Format

{
  "image_id": "your_prediction_image_id",
  "dimensions": {
    "width": 224,
    "height": 224
  },
  "aoi_statistics": {
    "header-logo": {
      "name": "Header Logo",
      "coordinates": {
        "x": 20,
        "y": 10,
        "width": 150,
        "height": 60
      },
      "metrics": {
        "vai": {
          "500ms": {
            "aoi_score": 15.3,        // AOI Attention Score (%)
            "average": 0.153,         // Average cell value
            "max": 0.421,             // Maximum cell value
            "min": 0.002,             // Minimum cell value
            "std_dev": 0.087,         // Standard deviation
            "total_attention": 0.023  // Sum of all cell values
          },
          "1000ms": { "aoi_score": 18.7, ... },
          // ... other time ranges
        },
        "speed": {
          "500ms": {
            "aoi_score": 22.1,        // Speed: average × 100%
            "average": 0.221,
            "max": 0.654,
            "min": 0.001,
            "std_dev": 0.132,
            "total_attention": 0.034
          },
          // ... other time ranges
        },
        "reach": {
          "500ms": {
            "aoi_score": 19.8,        // Reach: average × 100%
            "average": 0.198,
            "max": 0.587,
            "min": 0.003,
            "std_dev": 0.098,
            "total_attention": 0.031
          },
          // ... other time ranges
        },
        "hold": {
          "500ms": {
            "aoi_score": 4.1,         // Hold: percentage of total attention
            "average": 0.041,
            "max": 0.089,
            "min": 0.001,
            "std_dev": 0.019,
            "total_attention": 0.006
          },
          // ... other time ranges
        }
      }
    },
    "cta-button": {
      "name": "Call to Action Button",
      // ... similar structure for each AOI
    }
  },
  "summary": {
    "best_performers": {
      "vai": {
        "aoi_id": "cta-button",
        "aoi_name": "Call to Action Button",
        "average_score": 28.4
      },
      "speed": { "aoi_id": "header-logo", ... },
      "reach": { "aoi_id": "cta-button", ... },
      "hold": { "aoi_id": "header-logo", ... }
    },
    "scan_path_order": [
      {
        "rank": 1,
        "aoi_id": "header-logo",
        "aoi_name": "Header Logo",
        "speed_score": 22.1
      },
      {
        "rank": 2,
        "aoi_id": "cta-button",
        "aoi_name": "Call to Action Button",
        "speed_score": 18.7
      }
    ]
  }
}

AOI Score Calculations

Speed & Reach: Average cell values × 100
Hold: Percentage of total image attention
VAI: Average of Speed, Reach, and Hold AOI scores

Statistical Metrics

Each AOI provides comprehensive statistics including average, maximum, minimum, standard deviation, and total attention values for thorough analysis.

Scan Path Analysis

Automatically generates predicted viewing order based on Speed scores, helping optimize design layouts for natural attention flow.

Multi-Metric Comparison

Compare AOI performance across all attention components (VAI, Speed, Reach, Hold) and time ranges for comprehensive insights.

Ready to Start Building?

Get your API credentials and start integrating attention prediction into your applications today

Always refer to the official API documentation for the most current endpoints, authentication, and rate limits.